Constraints on precipitation microphysics from cold-season ground validation observations

Claire Pettersen¹ and Norm Wood¹

With contributions from: Mark Kulie¹, Walter Petersen², and Larry Bliven²

¹University of Wisconsin-Madison, Space Science and Engineering Center, Madison, Wisconsin, <u>claire.pettersen@ssec.wisc.edu</u> ²National Aeronautics and Space, Goddard Space Flight Center/Wallops Flight Facility, Wallops Island, Virginia

PMM STM 2016 Houston, Texas Poster Number: 248

Time/Height

- MicroRain Radar profiles show characteristics that tie to differences in meteorological forcing, which seem consistent at different sites
- Microphysical retrievals on Ground Validation observations will allow us to relate these radar classifications to the underlying microphysical properties
- Tying remotely-sensed radar profiles to these proto-typical histograms (CFADs) should allow improved a priori assumptions in radar-based retrieval algorithms

Microphysical properties from GV observations

Remote sensing techniques like optimal estimation can be used to 'retrieve' microphysical properties from near-surface observations. For snow:

- N(D) (disdrometer)
- V(D) (disdrometer)
- Z_e at range ~0 (radar)
- Precipitation rate (e.g., Pluvio)
- $m(D) = \alpha D^{\beta}$
- $A_p(D) = \gamma D^{\sigma}$

Extending with observations aloft:

GCPEx storm with in situ aircraft sampling

Data and Science Resources

- Website with Quicklooks and Data Browser: http://www.ssec.wisc.edu/lake_effect/mgt/
- GCPEx MicroRain Radar Data: ftp://gpm.nsstc.nasa.gov/gpm_validation/

NASA Support Provided by Grants: NNX16AE87G

- Wood, N. et al., : Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles, J. Appl. Meteor. Climatol., 54, 909–931, 2015,
- Skofronick-Jackson, G. et al.: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement's Sake, Let It Snow, BAMS, 96.10, 1719-1741, 2015. doi: 10.1175/BAMS-D-13-00262.1
- 10.1175/2009JAMC2193.1

Kulie, M. and Bennartz, R.: Utilizing Spaceborne Radars to Retrieve Dry Snowfall, J. Appl. Meteor. Climatol., 48, 2564–2580, 2009, doi:

Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing, Atmos. Meas. Tech., 5, 2661–2673, 2012, doi:10.5194/amt-5-2661-2012.

Broader/smaller reflectivities • -10 – 10 dBZ CFAD is more randomly distributed than LES cases

Snow Example: Orographic

8 February, 2015 (0Z - 24Z) Orographic Event:

0 5 10 15 20 Reflectivity (dBZ)

Reflectivity (dBZ)

CFADs

CFAD has a slope

through the BL

particle growth?

Evidence of

Upper-Level Event: Broad range of

reflectivities -5 – 20 dBZ CFAD has an opposite slope through the BL Evidence of particle

CFAD has a slope

through the BL

particle growth?

Evidence of